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the effect of the damping force were obtained. Four regions of stability for r and z components with the
damping force as well as the maximum value of q when U = 0 for the first region, namely qmax, versus
damping factor k were computed using the fourth-order Runge–Kutta method. Comparisons were made
with the corresponding stability diagrams without the damping force effect recently published in the
literature. The third and fourth stability regions in the presence of the damping force, the curve of qmax

relat
igher stability region
aul trap

as a function of k and the

. Introduction

Some techniques based on laser cooling of atoms have been seri-
usly used for high-resolution mass spectrometry since 1985. Such
tudy plays an important role in the dynamics of the particles con-
ned in a quadrupole ion trap [1]. In this process, a moving atom in a
aul trap travels toward a laser beam and absorbs photons from the
eam. The energy of the atom is slowed down, and consequently
he atom experiences a damping force proportional to its speed.
sing this technique, it is possible to cool atoms to a temperature
own to a few micro-Kelvin, and confine them in a region into the
rap for times long enough to carry out an experiment. Computa-
ion of ion motions in a Paul trap considering the effect of damping
orce as well as the corresponding stability regions are of particular
mportance in high-resolution mass spectrometry [2].

On the other hand, Paul traps operating in the first stability
egion are used for some applications. To obtain mass spectrometry
ith higher resolution or for specialized applications, one might
esign a Paul trap to operate in higher stability regions [3,4] and
t very low temperature. However, these regions are not used as
xtensively as the first region. For higher regions, only a very small
ass range of ions can be trapped, which are specified by the sizes
f the stability regions [5]. For an ion with a given energy, using a
rap operating in these regions, higher resolution can be achieved.
n other words, for a given resolution, ions of higher kinetic energy
an be trapped [4]. Paul traps working in the higher stability dia-
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grams considering the effects of damping force gain much higher
mass resolution in comparison with those operating in the first
region of stability.

Influence of damping force on the motion of a single ion and
the corresponding first and second stability diagrams have been
investigated by Hasegawa and Uehara [6]. Moreover, one can see
the stability of three-dimensional motion for a single particle in
a Paul trap and the two stability diagrams in the presence of the
damping force. It is worth nothing that, so far as we know, no report
exists regarding the computation of stability regions higher than
the second one for a Paul trap considering the damping force.

The purpose of this article is to study the dynamical behavior
of ions confined in a Paul trap in the presence of the damping
force as well as computation of the higher stability regions using
the fourth-order Runge–Kutta method. The four diagrams of sta-
bility with the effect of damping force presented here have been
compared with the corresponding regions found in the literature
without the damping force. The third and fourth stability regions
in the presence of the damping force have not been reported previ-
ously. Furthermore, the effect of the damping factor on the quantity
qmax was numerically computed which has been carried out for the
first time.

2. Theory
Fig. 1 shows a schematic view of a Paul trap with grounded ring
electrode. The damping force F is assumed to be proportional to the
velocity v of the ions as follows:

F = −Dv, (1)

http://www.sciencedirect.com/science/journal/13873806
http://www.elsevier.com/locate/ijms
mailto:hnoshad@aeoi.org.ir
dx.doi.org/10.1016/j.ijms.2009.09.003
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Fig. 1. A schematic view of a Paul trap.

here D = M� and v stands for the ion velocity. In the relation, the
arameter M denotes the mass of the ion; whereas, � is a constant.

t is worth noting that there are two kind of damping forces; one
s due to the collisions of ions with the buffer gas molecules into
he trap; while another one is related to the collisions of ions with
he photons of the laser used for cooling purposes. For collisions
ith gas molecules, the constant � is extracted by the mobility data

or specified ions and buffer gases into the trap, and depends on
he pressure and temperature of the gas. For instance, typical data
or mobility of ions with small drift velocities in some gases for a
ressure of 10−4 mbar can be found in [7]. Moreover, the constant
is expressed in terms of the mobility � as follows [7]:

= q

M

1
�

. (2)

The reduced mobility �0 is also given by the following expres-
ion [7]:

0 = �
273.16 K

T

p

1013 mbar
, (3)

here T and p are the temperature of the buffer gas in K and its
ressure in mbar, respectively. As long as the kinetic energy of the

on does not exceed a few electron-volts, the mobility is usually
onstant within a few percent. In accordance with the simple theory
f hard-sphere collisions, the mobility of the ion decreases, as the
ass of the buffer gas increases.
At low pressures, collisions of ions with the photons of the laser

mployed for cooling of ions is a dominant phenomenon; whereas,
ollisions of ions with the buffer gas molecules have less contribu-
ion in the damping term.

By applying the dc and high frequency ac voltages to the end-cap
lectrodes of the trap, namely U + Vcos ˝t, and considering r2

0 = 2z2
0

or the trap [8], solving the Laplace’s equation gives the electric
uadrupole potential into the trap as follows [8,9]:

(r, z) =
(

U + Vcos˝t
)

4z2
0

(
2z2 − r2 + 2z2

0

)
, (4)

here V stands for zero to peak voltage, namely V0–P, and ˝ = 2�f
enotes the angular frequency of the ac voltage, and f is the fre-
uency in Hz. Afterwards, the electric field components into the
rap are expressed by [9]

(
U + Vcos˝t

)

z = −
z2

0

z (5)

r =
(

U + Vcos˝t
)

2z2
0

r. (6)
Fig. 2. The r position as a function of time in the presence of damping force (k = 1)
for a 23Na+ ion for f = 0.5 MHz, U = 0, V = 310 V and r0 = 15 mm.

The set of differential equations governing the motion of an ion
with mass M and charge Q into the trap taking into account the
effect of damping force is given as follows:

d2z

d�2
+ 2k

dz

d�
+

(
az − 2qzcos2�

)
z = 0 (7)

d2r

d�2
+ 2k

dr

d�
+

(
ar − 2qrcos2�

)
r = 0. (8)

In the relations, the dimensionless parameters a, q, � and damp-
ing factor k are defined as

az = −2ar = 4QU

Mz2
0˝2

(9)

qz = −2qr = −2QV

Mz2
0˝2

(10)

� = �t

2
(11)

k = D

M˝
. (12)

3. Results and discussion

The set of ordinary differential Eqs. (7) and (8) were numeri-
cally solved considering damping force effect due to collisions of the
ions with photons with damping factor k = 1. As the damping force
due to photons is dominant, the quantity k = 1 can be attributed
to any low buffer gas pressure down to 10−5 mbar. For a ten-fold
increase in pressure, if the new pressure still becomes of the order
of 10−5 mbar, trapping of ions occur, and our computation is valid.
It goes without saying that for atmospheric pressure, there is no
ion trapping.

It is worthwhile to note that Eqs. (7) and (8) were solved
by Hasegawa and Uehara [6] using a transformation in order
to be reduced to the Mathieu’s equation [8]. In this article, our
computation was numerically carried out using the fourth-order
Runge–Kutta method [10]. In the algorithm, small steps for the
dimensionless variable � were selected in order to make sure that
the computational results are accurate enough.

Due to the damping factor k, the dynamical behavior of the ion
may become stable, which corresponds to a bounded particle into
the Paul trap. Figs. 2–5 depict the r and z positions as a function
of time, the phase space curve and ion trajectory for a typical ion
such as 23Na+ obtained from our computation for a Paul trap with

r0 = 15 mm, f = 0.5 Hz, U = 0 and V = 310 V, taking into account the
damping force, when k = 1. It is more clear that under these condi-
tions, ion trajectories with no damping (k = 0), which correspond to
unstable cases can become stable under heavy damping. It is worth
noting that Fig. 4 is also called as a Poincaré plot.
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Fig. 3. The z position as a function of time in the presence of damping force (k = 1)
for a 23Na+ ion for f = 0.5 MHz, U = 0, V = 310 V and r0 = 15 mm.
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ig. 4. dz/dt as a function of z in the presence of damping force (k = 1) for a 23Na+

on for f = 0.5 MHz, U = 0, V = 310 V and r0 = 15 mm.

In Figs. 6 and 7 the stability regions for z and r components
btained from our computation considering the damping force
k = 1) have been compared with the corresponding results without

he damping term, namely k = 0. The curves in the figures have been
abeled in accordance with the terminology used by March and
ughes [11]. One can see that the even-order curves are symmetric
bout the a axis, but the odd-order curves are not.

ig. 5. The trajectory of a 23Na+ ion in the presence of damping force (k = 1) for
= 0.5 MHz, U = 0, V = 310 V and r0 = 15 mm.
Fig. 6. Comparison between the stability regions for z component in the a–q plane
with and without damping force.

Afterwards, four stability regions for the Paul trap were com-
puted using the fourth-order Runge–Kutta method. Figs. 8–11 show
the four stability regions obtained from our computational results
in the presence of damping force. The corresponding results for k = 0
taken from [5] are also included in Figs. 8–11 in order to be able to
compare them at a glance. As a conclusion, one can see that the
first stability region for k = 1 is significantly stretched as compared
with the corresponding result for k = 0. Whereas, the second, third
and fourth stability regions are not only enlarged but also shifted.
It is noticeable that the first and second stability diagrams shown
in Figs. 8 and 9 are in good agreement with the results reported by
Hasegawa and Uehara [6].

Computation of qmax is of particular importance in order to
design and construction of a Paul trap. Hence, we calculated qmax in
terms of the damping factor k. Fig. 12 represents qmax as a function
of k. A nonlinear fitting for the curve gives Eq. (13), which is in excel-
lent agreement with the computational data within the uncertainty
of 2%.
qmax = 0.82 exp (1.04k) (13)

Fig. 7. Comparison between the stability regions for r component in the a–q plane
with and without damping force.
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Fig. 8. The first stability region for a Paul trap in the a–q plane. The diagrams labeled
by A and A′ correspond to k = 1 and k = 0, respectively.

Fig. 9. The second stability region for a Paul trap in the a–q plane. The diagrams
labeled by A and A′ correspond to k = 1 and k = 0, respectively.

Fig. 10. The third stability region for a Paul trap in the a–q plane with A and A′ labels,
which correspond to k = 1 and k = 0, respectively.

Fig. 11. The fourth stability region for a Paul trap in the a–q plane with A and A′

labels, which correspond to k = 1 and k = 0, respectively.
Fig. 12. qmax as a function of damping factor k in a Paul trap defined for the first
stability region for 0 ≤ k ≤ 1.7.

4. Conclusion

Four stability regions of a Paul trap in the presence of damping
force were computed using an algorithm based on the fourth-order
Runge–Kutta method. The r and z stability diagrams as well as the
third and fourth regions of stability with damping term have been
computed for the first time. We drew a conclusion that the first sta-
bility region considering damping force is enlarged in comparison
with the result obtained without the damping term; whereas, for
the higher regions of stability one can see a significant shift as well
as enlargement.

Furthermore, for the first region, qmax versus damping factor for
0 ≤ k ≤ 1.7 presented here gives fruitful information on ion trapping
in various buffer gas pressure and temperature. We concluded that
for k > 1.7, which corresponds to higher gas pressure into the trap,
an anomalous in shape of the first region is observed. It means that

the quantity qmax cannot be defined as a single-valued parame-
ter. The curve qmax in terms of the damping factor k has not been
reported in the literature previously.
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